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Shear layer instability of an inviscid compressible fluid 

By WILLIAM BLUMEN 
Department of Astro-Geophysics, University of Colorado, Boulder 

(Received 26 May 1969 and in revised form 4 September 1969) 

The stability of parallel shear flow of an inviscid compressible fluid is investigated 
by a linear analysis. The extension of the Rayleigh stability criterion and 
Howard’s semi-circle theorem to compressible flows, obtained by Lees & Lin 
(1946) and Eckart (1963) respectively, are each rederived by a different approach. 
It is then shown that a subsonic neutral solution of the stability equation may 
be found when the basic flow is represented by the hyperbolic-tangent velocity 
profile. With the aid of this solution, the unstable eigenvalues, eigenfunctions 
and Reynolds stress are determined by numerical methods. A brief discussion 
of the results follows. 

1. Introduction 
The stability of parallel shear flow of an inviscid, homogeneous fluid to in- 

finitesimal two-dimensional non-divergent disturbances has pervaded the 
scientific literature for the past century. Although this model is somewhat limited 
in application, the mathematical techniques and physical insight into the 
mechanism of inertial instability provided by this problem have proved in- 
valuable to studies of more realistic problems. An interesting extension of this 
classical homogeneous fluid model is the linear stability of parallel shear flow of 
a compressible perfect gas (e.g. see Betchov & Criminale 1967, for a brief review). 
The Mach number appears as a parameter in this problem and the results estab- 
lished for homogeneous fluids are recovered as the sound speed a* + 00, i.e. the 
fluid tends toward incompressibility. I n  investigations of the compressible flow 
problem, the pressure field of the basic steady state is usually assumed constant 
throughout the fluid medium. Then the shallow water equations (e.g. Courant & 
Friedrichs 1948) and the equations governing motions in an infinite barotropic 
atmosphere (Obukhov 1949) are analogues of the perturbation equations for 
compressible flow. I n  these cases the Froude number replaces the Mach number 
as the relevant parameter. 

Haurwitz (1931) apparently first derived the stability equation for basic flows 
with a continuous distribution of velocity and temperature. However he did not 
attempt to determine stability characteristics with continuous basic flows. Until 
recently the stability of a compressible fluid has mainly been studied as a Kelvin- 
Helmholtz problem in an infinite medium. This work has been reviewed briefly 
by Gerwin (1968). Recent studies with continuous profiles have been reported 
by Lees & Reshotko (1962) and Mack (1965). Due t o  the mathematical complexi- 
ties of this latter problem, general stability criteria have not been found as readily 
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as in the homogeneous fluid model. In  fact an analytical neutral eigensolution, 
corresponding to some particular basic velocity and temperature profile, ap- 
parently has not been found. For this reason, the unstable eigenvalues are 
generally found by a careful search procedure (e.g. Mack 1965) which could use 
a large amount of computer time in delineating the region of instability. 

In  order to simplify the stability problem, the present investigation will focus 
on the stability of a basic parallel shear flow to two-dimensional disturbances 
in a perfect gas, whose basic thermodynamic state is constant. With this simpli- 
fication, unstable eigenvalues for the hyperbolic-tangent velocity profile are 
readily found by numerical integration, with the aid of an analytical neutral 
wave solution. These results also apply to the wider class of fluid systems, 
indicated above, which are analogues of this compressible fluid model. 

2. Basic equations 
We shall consider the linear stability of the basic plane parallel flow, U*(y*), 

of an ideal gas moving in the x* direction, with transverse variations along the 
y* axis. The basic thermodynamic state is constant and is characterized by the 
sound speed 

where p* and p* are pressure and density respectively and y denotes the ratio 
of specific heats. Superposed on this basic state are small disturbances in the 
(x*, y*) components of velocity, (u*, v*), and pressure p*. 

Non-dimensionalization will be carried out by introducing a velocity scale U 
and length scale L, which are characteristic of the transverse variations of the 
basic current U*(y*). We then define the dimensionless co-ordinates, time, 
velocities and pressure as 

a* = yp*/p*, (1)  

(2) 1 (x, y) 3 (x*, y*)/L, t = t*U/L,  
u = G*/U) (U) v) = (u*, V * ) / U ,  

7T 3 p*/p*u=. 

The Mach number is M = U/a*. Then the basic system of inviscid equations 
becomes (e.g. Betehov & Criminale 1967) 

Ut + Gu, + vu, = - nz, 
vt + uv, = - nu, 

M2(7r, + Un,) + u, + v, = 0, 

(3) 

(4) 

( 5 )  

where (3) and (4) are the momentum equations, and the equations of mass con- 
tinuity and entropy conservation have been combined to yield ( 5 ) .  

Each wave disturbance will be represented in the form 

q = ad exp [%x - cq1, (6) 

where q is u, v or n, a is the real x wave-number and c = c, + ici is the complex 
phase velocity. The stability problem is to determine the complex eigenvalues c 
under the conditions that each wave disturbance (6) satisfies the linear equations 
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and boundary conditions separately. Instability corresponds to cd > 0 and 
consequently an exponential growth of the wave disturbance at  the rate act. 

We shall make use of the differential equations for the amplitudes of pressure i? 
and transverse velocity component a. These equations may be obtained from 
(3), (4), (5) and (6) in the form 

(ZL- c) ii”- 2ZL’fi’ - ayu - c) [l - M2(U- c)2] ii = 0 (7 )  

and ([(;El-c)a’-u’a]/[l-M2(ZL-c)2])’-a2(ZL-c)a = 0, (8) 

where a prime denotes differentiation with respect to y. 
According to Lees & Lin (1946), there are three types of disturbances associated 

with (7) or (8). These are classified as subsonic, sonic, or supersonic depending on 
whether the relative phase velocity c - ;il is less than, equal to or greater than the 
sound speed (l), i.e. Ic-ZLl f3l-l. The subsonic disturbances are the counter- 
part of the so-called inertial modes, which are solutions of (8) in the limiting 
case M = 0 (the Rayleigh stability equation). The physical significance of the 
sonic disturbances is apparently not clear and will not be considered further. 
Finally, supersonic disturbances correspond to compression or sound waves. 
Stable modes of this type, moving in the positive or negative x direction, satisfy 

where Tirna, and ;ilmin denote the maximum and minimum values of U respectively. 
In the shallow water and barotropic models, these latter modes are simply gravity 
waves. 

In  the present investigation we shall consider the stability of parallel shear 
flow to two-dimensional subsonic disturbances. Accordingly, if the fluid is 
unbounded the solution of (7) approaches 

i i -  exp(Ta[l-M2(D-c)2]~y) as y+  .+a, (10) 

ii = a = 0 (y = +m). (11) 

(12) 

where it has been assumed that ZC approaches a constant value. Then, the 
boundary conditions become 

On rigid boundaries the normal velocity must vanish. Thus, from (4), 
A h  v = 71’ = 0 (y = yl, yz). 

3. Stability characteristics 
Some general stability characteristics have already been derived by Lees & 

Lin (1946) and later summarized by Lin (1953). They established that, as in the 
Rayleigh stability problem, a necessary and sufficient condition for the existence 
of a neutrally stable subsonic disturbance is 

ZL” = 0 at  y = ys, (13) 

where ys is the point where ’ii = c,.. Here we shall show that Fjerrtoft’s (1950) 
extension of Rayleigh’s theorem is also a sufficient condition for stability to 
subsonic disturbances. The method of proof is due to Drazin & Howard (1966). 
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The perturbation energy equation, derived from (3),  (4) and ( 5 ) ,  is 

- / / € d x d y  a = - / /uvuf  dxdy, 
at 

where Q = &(u2+v2+M2+) (15) 

denotes the sum of disturbance kinetic plus elastic energy per unit mass and the 
right-hand side of (14) is the rate of energy conversion by the Reynolds stress. 
In the case of a homogeneous fluid, the elastic energy is replaced by the available 
potential energy due to free surface displacements, while in a barotropic atmo- 
sphere the available potential energy is associated with pressure oscillations at 
the lower boundary. Cyclic continuity of all variables is assumed in the x direction 
and either (11) or (12) applies at  the boundaries y1 and yz. 

The equation for the perturbation potential vorticity w may be written 

where 
From (16) we obtain 

Upon integration by parts and use of (3) and ( 5 ) )  we get 

Addition of (14) and (19) yields, after rearrangement, 

up" > 0) (21) 

an initial increase in the perturbation kinetic energy remains bounded because 

must simultaneously decrease. Thus subsonic flow is stable if UjU" > 0. 
Eckart (1 963) has extended Howard's semi-circle theorem, restricting the 

range of unstable eigenvalues, to more general compressible flows than those 
considered here. This theorem will be rederived for the present model using the 
normal mode approach. If ci $. 0 and U finite, then (7) may be divided by 
(U - c)3,  with the result 

([U - c]-2$')'- a2([U- c]-2- M2) ii = 0. (22) 

Multiplication of (14) by $*, the complex conjugate of 6, and application of (1 1) 
and/or (12) yields 
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where the boundaries at y1 and/or y2  may be at  infinity. This equation (23) has the 
same form as (3.1) in Howard’s (1961) investigation of the stability of parallel 
shear flow of an incompressible fluid of variable density. Then it follows that 

0 3 {[c, - *(Urnax + Urnin)12 + C: 
Y, 

- [ & ( ~ m a x - ~ r n i n ) 1 2 } /  Y, ~ d y +  ( a ~ ) 2 / :  1;12dy, (24) 

where Q = IU-CI-4(1;’12+a21;12). (25) 

[ ~ , - $ ( G r n a x  +Umin)l2+c: < [+(Grnax--rnin)l2. (26) 

Since ( ~ L W ) ~  2 0 and Q > 0, then (24) implies 

We note from (24) that increasing values of aM plays the same role in reducing 
the allowable range of unstable eigenvalues as increasing values of the Richardson 
number, in Howard’s result. 

4. A neutral subsonic disturbance 
The &ability characteristics of the hyperbolic-tangent velocity profile 

U = 0.5( 1 + tanh y) in an inviscid homogeneous fluid has been studied in some 
detail by Michalke (1964). 

His numerical analysis proceeded from a knowledge of a neutrally stable 
eigenfunction solution. This approach will be adapted to the present problem 

(27) 
using the profile - 

u = tanhy, -a < y < m. 
We first note that (7) and (8) reduce to the stability equations for parallel flow 

in a homogeneous fluid, when M = 0. In this case the neutral wave solution of (7) 
may be obtained from Garcia’s (1956) solution for the stream function, and is 
given by 

where the only neutral eigenvalue is a = 1 .  Guided by this result, we shall try 
as a solution of (7)  ; = A seeha y, 

where A and. p are constants to be determined. Substitution of (27) and (29) 
into (7 )  leads to a solution if 

(28) 

(29) 

= sechy, c, = u(0) = 0, 

(30) 1 c, = U ( 0 )  = 0,  

p = a2, 

a2+M2 = 1. 

Since (13) is satisfied by the hyperbolic-tangent profile (27) and phase speed 
given by (30), then (29) is a neutrally stable solution of (7). The locus of neutral 
eigenvalues, given by (30), is a circle of unit radius in the a , M  plane. 

The corresponding solutions for 0 and a, found from (4), ( 5 )  and (6) are 

0 = -iaA(sechy)l-M* (31) 

and = - A tanh y(sech y)l-Ma. (32) 

The value of A will be discussed in conjunction with the determination of the 
unstable eigenfunctions in the following section. 



774 W .  Blumen 

5. Numerical computations of the unstable disturbances 
Eigenvalues and growth rates 

The numerical approach used by Michalke (1964) is well adapted for use in the 
present problem. In this method the numerical computations of the unstable 
eigenvalues are simplified by introduction of the transformations 

h'/h = rI(y) = rIp+irI, (33) 

and z = tanh y. (34) 

- l < z < l .  (35) 

The latter transformation reduces the integration range to 

After (27), (33) and (34) are introduced into (7), and the real and imaginary parts 
separated, a coupled system of first-order equations for the variables n, and II, 

M 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

U 

0.445 
0.433 
0.426 
0.417 
0.409 
0.397 
0.370 
0.326 
0.279 
0.208 
0.000 

TABLE 1 

ci 
0.427 
0.433 
0.426 
0.411 
0.386 
0.356 
0.330 
0.309 
0.279 
0.264 
0.000 

aci 
0.1.90 
0.187 
0.181 
0.171 
0.158 
0.141 
0.122 
0.101 
0.078 
0-055 
0~000 

is obtained. These equations, together with the derivation of the boundary con- 
ditions, may be found in the appendix. Computations of ci and aci were made 
over the region 0 < a2+ M2 < 1 at intervals Aa = AM = l O - l ,  with cr = 0. 
However, in some regions smaller intervals were used, in order to delineate 
rapid changes in ci. Isolines of constant growth rate aci in the a, M plane, are 
shown in figure 1. The maximum value of ac, occurs on the a axis at a = 0.4446, 
as found by Michalke (1964).f The dashed line is a curve of maximum aci for 
M > 0. The numerical values along this curve are given in table 1. 

The functions II, and I I i  along the maximum growth rate curve are dis- 
played in figure 2. and IT i  are antisymmetric and symmetric functions of y 
respectively. The amplitude of I I r +  0 as M - t  1, a+ 0; while IT, ( z  = & 1) reaches 
its maximum amplitude when M N 0.9, a 21 0.205, then diminishes to zero as 
M + l ,  a+O. 

When the shear flow is antisymmetric (27), Howard (1963) has pointed out 
that the symmetry in the direction of wave propagation may be preserved by 

t The computed eigenvalues ci, and therefore the growth rates, along the u axis are 
twice as large as those computed by Michalke, because the amplitude of his basic velocity 
profile is one-half the value used in (27). 
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1 -0 

0.175 \ \ \ \  

0 0.2 0.4 0.6 0.8 1 .o 
M 

FIGURE 1. Isolines of growth rate aci in the a, M plane. The maximum 
growth rate for a given M occurs along the dashed line. 

7 
=0.9 

0 
-0.1 

-1.0 -0.8 -0.6 -0.4 -0.2 
z 

F~GURE 2. The functions n, and H i ,  defined by (33), for various values 
of M along the maximum growth rate curve. 
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two waves moving in equal and opposite directions, as well as by a stationary 
wave (c, = 0). Here we have shown that the locus of stable eigenvalues (30) 
forms a neutral curve which is adjacent to unstable waves with c, = 0. How- 
ever, the possibility that unstable waves could also exist with c, $; 0 has not 
been investigated. 

Eigenfunctions and Reynolds stress 

The eigenfunctions, i?, and iii, may be determined from (7 ) ,  using the computed 
eigenvalues. I n  conformity with Michalke (1964), the integration may be carried 
out in 0 6 y < 00 since i?, and i?$ are symmetric and antisymmetric functions of y 
respectively. This follows from (33), using the fact that II, and TIi are anti- 
symmetric and symmetric functions of y .  

The constant A in (29) is still undetermined. We shall fix A by requiring that, 
when M = 0 and a = 1, A = 1 and that the eigenfunetions at a = 0, M = 1 be 
equal to the neutral eigenfunctions. A value which accomplishes this is A = d. 
Accordingly we take as starting values for the integration 

i?,(O) = a2, i?i(o) = 0. (36) 

i?;(o) = 0, iii(0) = a2rIIi(0). (37) 

i? = sech y, (38) 

We obtain from (23) and (36). 

When M = 0 and a = 1, (29) and (30) yield 

which agrees with (36) and (37) when a = 1, since II,(y) = 0. Initial conditions 
(36) and (37) also ensure that $ ( y )  = 0 when a = 0 (0 < M < l), and the neutral 
solution (29) likewise vanishes a t  CL = 0. Michalke (1964) normalized his initial 
values by choosing the arbitrary constant equal to  unity. This was an unfortunate 
choice, since the solution for the stream function amplitude for a = 0 does not 
vanish at  y = 5 03 as required by his boundary condition (4). However, the eom- 
putation of the eigenvalues is unaffected and the pressure and velocity com- 
ponents do vanish at  the boundaries. 

Some eigenfunctions i?, a and Q along the neutral curve a2 + M2 = 1, given by 
(as), (31) and (32) are shown in figure 3; while in figure 4 some unstable eigen- 
functions i?, computed along the maximum growth rate curve, arc displayed. 

The initial value of the Reynolds stress, averaged over one wavelength, 
may be expressed as 

(39) T = -ReuRev = -$(Qr6,+$li@i). 

The eigenfunctions Q and 0, needed to calculate T, may be determined from (3) 
slid (4). These functions are given by 

where c* is the complex conjugate of c. 
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The distribution of?, which is a symmetric function of y ,  is shown in figure 5. 
Throughout the region of instability, along the maximum growth rate curve, 
T 2 0 for all y ,  except in a few cases when r < 0 ( y  > 2.2). I n  each of these cases 
1.1 is three orders of magnitude less than ~ ( 0 ) .  However, these values fall a t  the 

0.' 

0 1 2 3 4 

Y 
FIGURE 3. Neutral eigenfunctions G, d and 121 as functions of y. The solid and 

dashed curves correspond to M = 1.0 and M = 0.5 respectively. 

2 

M=O.O 

0 2 4 

0.02 

7;,0.01 

0 

Y Y 
FIGURE 4. The real and imaginary parts of the unstable eigenfunction 7; 

for various values of M along the maximum growth rate curve. 

limit of accuracy of the numerical computations and may be spurious. The cusp 
in T at  the origin sets in a t  approximately M = 0.10 along the maximum growth 
rate curve. 

Since U' = sech2 y > 0, the Reynolds stress acts to convert the kinetic energy of 
the basic horizontal shear flow into disturbance energy. A possible implication 
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of the distribution of dr /dy  is discussed below. Finally, it may be verified by 
direct computation that the neutral waves, whose amplitudes are given by (31) 
and (32), produce ~ ( y )  = 0 as expected from the analysis of Lees & Lin (1946). 

I 

Y 

FIGURE 5 .  The Reynolds stress distribution for various values of M 
along the maximum growth rate curve. 

6.  Discussion 
The results of this investigation differ from those of the homogeneous non- 

divergent fluid model because compressible fluid motions are permitted (or 
equivalently, free surface displacements of a homogeneous fluid). This extra 
degree of freedom is a stabilizing feature, which is evidenced by a diminution of 
the unstable region in the a, N plane and a decrease in the growth rate as M 
increases. Physically, this stabilizing effect arises because a certain amount of 
basic flow energy must be used to do work against the force due to the elasticity 
of the medium, before it becomes available to initiate instability. Investigations 
of the stability of parallel flow of a density stratified fluid under the action of 
gravity show a similar stabilizing feature, because some of the available basic 
flow energy must be used to do work against the buoyancy force. For example, 
Drazin (1958) showed that an increase in the Richardson number, J > 0,  de- 
creases the unstable region in the a, J plane. 

Another interesting feature is the cusp in the Reynolds stress at y= 0.t 
Qualitatively, the distribution of r in figure 5 shows a small region, in the vicinity 
of the origin (0 6 y 5 0.2), where u momentum is accumulating. On the negative 

t A similar feature was found by Gilman (1969), who investigated the stability of a 
baroclinic flow in a zonal magnetic field. However, in Gilman’s study, the cusp appeared 
in the horizontal and vertical heat transport or thermal stress. 
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side (0 2 y 2 - 0*2), there is a flux divergence of momentum. The initial second- 
order effect, produced by this particular distribution of drldy, would be a ten- 
dency toward the creation of a discontinuous or Kelvin-Helmholtz shear layer. 
However, under these circumstances, second-order calculations with an inviscid 
model (e.g. Lin & Benney 1962) may not be justified. A more detailed description 
of the jump in drldy at  the critical point would require the consideration of 
viscous effects. 
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made to the National Center for Atmospheric Research, which is sponsored by the 
National Science Foundation, for use of its Control Data 6600 computer. I wish 
to express my appreciation to Patrick J. Kennedy, for his capable handling of all 
the numerical computations, and to Dr Peter A. Gilman for his critical appraisal 
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Appendix: Basic equations and boundary conditions for the determina- 
tion of the unstable eigenvalues 

Upon introduction of (27), (33) and (34) into (7), we obtain 

drI a 2 (  1 - M2(z - c)2) - r I 2  2rI +-. dz 1-22 Z - C  
_ -  - 

Separation of the real and imaginary parts of (A 1) yields 

dIT, a 2 (  1 - M2(22- c; ) )  - rI; + nq +- (ZU, - Cf IT+)> dz 1-22 22 + cf 

drI ,  2(a2M2ci2 - IT, IT,) 2 
-- - +- (C{IT,+ZIT,). dz 1-22 2 2  + cq 

2 
_ _ -  - 

When lyl is large, the behaviour of $(y) is given by ( lo ) ,  with 

a( kco) = (tanhy),,*, = 5 1. 
Then it follows that 

rI( 1) = - a( 1 - M2( 1 - C)2)+, 

rI( - 1) = a( 1 -My 1 + C)2)+. 

The transformed boundary conditions may be obtained by squaring the expres- 
sions in (A 3) and solving for the real and imaginary parts of rI. The result is: 

rI,( 1) = - a2-+( [ 1 - N2( 1 - cq)] + {[ 1 - M2( 1 - C 4 ) y  + (2M2Ci)2)+)”,\ 

ITi( - 1) = ITi(l). 
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In  order to start the numerical integration, boundary values of d I I / d z  are needed. 
These may be found from (A 1) by application of L'Hospital's rule, since d I I / d z  
is not determined a t  z = _+ 1. When this evaluation is carried out, we obtain 

I 

d 3 1  = - % I  . 
dz z=-l 

Equations (A2) were integrated from the boundaries a t  x = f 1 for fixed 
a2 + N2 < 1. ci was chosen by trial and error until the solutions overlapped in 
-0.1 6 z < 0.1. These computations were carried out on thc CDC6600 com- 
puter, at  the National Center for Atmospheric Research, using a Runge-Kutta 
procedure and an integration step of 0-025, as used by Michalke (1964). However, 
when ci < 1, the integration step was decreased in - 0.1 6 x < 0.1, because the 
denominators in (A 2) become small. Finally, in order to check on the accuracy 
of the program, the computations were compared with Michalke's numerical 
results ( M  = 0) and with the neutral solution (29), (30). 
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